

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a
decision of the Customer.

Document
Smart Contract Code Review and Security Analysis Report for (45 pages).

Andrew Matiukhin | CTO Hacken OU

Token, Token sale
Tron / Solidity
Architecture Review, Functional Testing, Computer-Aided Verification, Manual Review.
Private https://shasta.tronscan.org/#/contract/TJE8Mv2kbKsbZrJW4aFRBktzW93ZK673fR

https://shasta.tronscan.org/#/contract/TA7Wxjfbpsip4Fdb7Yv1dGGkUAXXHe7cWN

https://shasta.tronscan.org/#/contract/TC5S6yRLCtfizCiwcrca7NnAHVK4GGvSqA

https://shasta.tronscan.org/#/contract/TTFoHFyNhtTJZ6oX18EzAtwm3AZKajkizd

https://shasta.tronscan.org/#/contract/TRscWDKqiHTMzfjdTAZZcMgMHiDUBeaK5W

https://shasta.tronscan.org/#/contract/TRBGVKnYXLDySBnZnVy896xqbv8L2cXnzU

https://shasta.tronscan.org/#/address/TALYz21hpGroczGV2mbsSNLyPVzR2xKhuL
December 16th, 2020 – Initial Audit
January 06th, 2021 – Remediation check

Table of contents

Introduction .. 3

Scope... 3

Executive Summary .. 4

Severity Definitions ... 6

AS-IS overview .. 7

Conclusion .. 10

Disclaimers .. 11

Name

Approved by

Type
Platform
Methods

Repository
Commit
Deployed

contract

Changelog

Introduction

Hacken OÜ (Consultant) was contracted by Divs (Customer) to conduct a Smart

Contract Code Review and Security Analysis. This report presents the findings of

the security assessment of Customer's smart contract and its code review

conducted between December 11th, 2020 – December 16th, 2020.

Remediation check was conducted January 06th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address. Token on testnet:
https://shasta.tronscan.org/#/contract/TJE8Mv2kbKsbZrJW4aFRBktzW93ZK673fR

Presale Round 1:
https://shasta.tronscan.org/#/contract/TA7Wxjfbpsip4Fdb7Yv1dGGkUAXXHe7cWN

Presale Round 2:
https://shasta.tronscan.org/#/contract/TC5S6yRLCtfizCiwcrca7NnAHVK4GGvSqA

Presale Round 3:
https://shasta.tronscan.org/#/contract/TTFoHFyNhtTJZ6oX18EzAtwm3AZKajkizd

Presale Round 4:
https://shasta.tronscan.org/#/contract/TRscWDKqiHTMzfjdTAZZcMgMHiDUBeaK5W

Stake Data contract:
https://shasta.tronscan.org/#/contract/TRBGVKnYXLDySBnZnVy896xqbv8L2cXnzU

Stake Handler Contract:
https://shasta.tronscan.org/#/address/TALYz21hpGroczGV2mbsSNLyPVzR2xKhuL Files:

DivToken.sol
Round1Presale.sol
Round2Presale.sol
Round3Presale.sol
Round4Presale.sol
StakeDataTron.sol
StakeHandlerTron.sol

We have scanned this smart contract for commonly known and more specific

vulnerabilities. Here are some of the commonly known vulnerabilities that are

considered:
Category Check Item

Code review  Reentrancy

 Ownership Takeover
 Timestamp Dependence
 Gas Limit and Loops
 DoS with (Unexpected) Throw

 DoS with Block Gas Limit

 Transaction-Ordering Dependence

 Style guide violation
 Costly Loop
 TRC20 API violation
 Unchecked external call
 Unchecked math
 Unsafe type inference
 Implicit visibility level

 Deployment Consistency

 Repository Consistency  Data Consistency
Functional review  Business Logics Review

 Functionality Checks
 Access Control & Authorization

 Escrow manipulation
 Token Supply manipulation

 Assets integrity
 User Balances manipulation

 Kill-Switch Mechanism
 Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart has issues, but most of them

were fixed before remediation check.

Our team performed an analysis of code functionality, manual audit, and

automated checks with Mythril and Slither. All issues found during automated

analysis were manually reviewed, and important vulnerabilities are presented

in the Audit overview section. A general overview is presented in AS-IS section,

and all found issues can be found in the Audit overview section.

Security engineers found 0 critical 0 high, 0 medium, 3 low and 10 informational
issues during remediation check.

Graph 1. The distribution of vulnerabilities.

Medium
0 %

Informational
77 %

Medium Low Informational Critical High

Severity Definitions
Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can

lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also

have a significant impact on smart contract execution, e.g., public

access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they

can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,

etc. code snippets that can't have a significant impact on

execution
Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info

statements can't affect smart contract execution and can be

ignored.

AS-IS overview

DivToken.sol

Description

DivToken is a contract used for the token crowdsale. Imports

DivToken contract hasn’t the following imports: Usages

DivToken contract has the following custom usages:

• SafeMath for uint256

Structs

CrowdSale contract has no the following data structures:

Enums

CrowdSale contract has no custom enums.

Events

DivToken contract has the following events:

• event Transfer(address indexed from, address indexed to, uint256
value);

• event Approval(address indexed owner, address indexed spender,

uint256 value);

Modifiers

DivToken has no custom modifiers.

Fields

DivToken contract has following constants:

• mapping (address => uint256) private balances;

• mapping (address => mapping (address => uint256)) private allowed;

• string public constant name = "Divs"; //Name

• string public constant symbol = "DIVS"; // Symbol

• uint8 public constant decimals = 8;

Functions

DivToken has following public functions:

• totalSupply

Description

Assigns the minting role.

Visibility external view
Input parameters

None

Constraints

None
Events emit
None Output
uint256

• balanceOf

Description

Assigns the

Audit overview
 Critical

1. None

 High

1. None

 Medium

1. None

 Low

1. StakeDataTron.sol: library Math - not used anywhere, and unnecessary in

a contract.

2. StakeHandlerTron.sol: can simplify initialSupply: 'uint256 initialSupply =

100000000; uint256 public token_precision_multiplier =

SafeMath.mul(initialSupply, 10**uint256(decimals));' to 'uint256 public

token_precision_multiplier = SafeMath.mul(100000000,

10**uint256(decimals));'.

3. Round1Presale.sol, Round2Presale.sol, Round3Presale.sol and

Round4Presale.sol: contracts are almost identical, the differences are

only in the variables buyLimit and tokenPrice. The better way is to create

a general class with all logic and add parameters to the constructor to

calculate buyLimit and tokenPrice.

 Lowest / Code style / Best Practice

1. StakeDataTron.sol: the function getMyStakeedTokens does the same as

getStakedTokens.

2. StakeHandlerTron.sol: replace assert with require and add a more

straightforward error description to require.

3. Round1Presale.sol, Round2Presale.sol, Round3Presale.sol and

Round4Presale.sol: now the contracts' name is identical

(StoredPresale) - rename them for convenience. Example: Round1Presale,

Round2Presale, Round3Presale and

Round4Presale.

4. Round1Presale.sol, Round2Presale.sol, Round3Presale.sol and

Round4Presale.sol: CeoAddress and multiplier parameters be private as

well.

5. Round1Presale.sol, Round2Presale.sol, Round3Presale.sol and

Round4Presale.sol: function buy() - Replace assert with require.

6. DivToken.sol: add a more straightforward error description to require.

7. StakeHandlerTron.sol: many public functions, maybe some of them can

be made private.

8. StakeDataTron.sol: stakeHandler address should be defined in

constructor.

9. StakeHandlerTron.sol: the check can be transferred and used as modify -

'require (msg.sender == ceoAddress,

"Unauthorized").

10. StakeDataTron.sol: the check can be transferred and used as modify -

'require (msg.sender == ceoAddress,

 "Unauthorized").

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. For the contract, high-level description of functionality was

presented in As-Is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in

the reviewed code.

During remediation check (January 06th, 2021) security engineers found 0
critical 0 high, 0 medium, 3 low and 10 informational issues.

Violations in the following categories were found and addressed to Customer:
Category Check Item Comments

Code review  Data Consistency  Data consistency can be

violated.
  Style guide violation  A lot of code-style issues were

found.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the

best industry practices at the date of this report, in relation to cybersecurity

vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also

cannot be considered as a sufficient assessment regarding the utility and safety

of the code, bugfree status or any other statements of the contract. While we

have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only - we recommend

proceeding with several independent audits and a public bug bounty program

to ensure security of smart contracts. Technical Disclaimer

Smart contracts are deployed and executed on a local blockchain platform. The

platform, its programming language, and other software related to the smart

contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't

guarantee the explicit security of the audited smart contracts.

